[Noisebridge-discuss] UC Berkeley talk: state of the art in brain-computer interfaces

C. Honnet cedric at honnet.eu
Wed Sep 11 19:58:16 UTC 2013

Apparently, this will be an interesting talk if you are curious about the
state of the
art in brain-computer interfaces.

---------- Forwarded message ----------
Date: Mon, Sep 9, 2013 at 10:43 AM
Subject: [eecs-announce] EECS Colloquium: Wednesday, September 11- Michel
Maharbiz "Neural Dust and Neural Interfaces"

Joint Colloquium Distinguished Lecture Series Neural Dust and Neural


Wednesday, September 11, 2013
306 Soda Hall (HP Auditorium)
4:00 - 5:00 pm
3:30 - Refreshments will be served

Michel Maharbiz
Professor, Electrical Engineering & Computer Sciences
UC Berkeley

A major hurdle in brain-machine interfaces (BMI) is the lack of an
implantable neural interface system that remains viable for a lifetime. I
will discuss Neural Dust, a concept developed with Elad Alon, Jose Carmena
and Jan Rabaey, which explores the fundamental system design trade-offs and
ultimate size, power, and bandwidth scaling limits of neural recording
systems built from low-power CMOS circuitry coupled with ultrasonic power
delivery and backscatter communication. In particular, we propose an
ultra-miniature as well as extremely compliant system that enables massive
scaling in the number of neural recordings from the brain while providing a
path towards truly chronic BMI. These goals are achieved via two
fundamental technology innovations: 1) thousands of 10 - 100 \mu m scale,
free-floating, independent sensor nodes, or neural dust, that detect and
report local extracellular electrophysiological data, and 2) a sub-cranial
interrogator that establishes power and communication links with the neural
dust. I will also touch on other recent findings in our group, including
micro-electrocorticography results which challenge commonly held beliefs on
the ultimate resolution limits of this recording modality.

Michel M. Maharbiz is an Associate Professor with the Department of
Electrical Engineering and Computer Science at the University of
California, Berkeley.

He received his Ph.D. from the University of California at Berkeley under
Professor Roger T. Howe (EECS) and Professor Jay D. Keasling (ChemE); his
work led to the foundation of Microreactor Technologies, Inc. which was
acquired in 2009 by Pall Corporation. From 2003 to 2007, Michel Maharbiz
was an Assistant Professor at the University of Michigan, Ann Arbor. He is
the co-founder of Tweedle Technologies, Cortera Neurotech and served as
vice-president for product development at Quswami, Inc. from July 2010 to
June 2011.

Prof. Maharbiz is a Bakar Fellow and was the recipient of a 2009 NSF Career
Award for research into developing microfabricated interfaces for synthetic
biology. His group is also known for developing the world?s first remotely
radio-controlled cyborg beetles. This was named one of the top ten emerging
technologies of 2009 by MIT?s Technology Review (TR10) and was in Time
Magazeine?s Top 50 Inventions of 2009. Dr. Maharbiz has been a GE Scholar
and an Intel IMAP Fellow. Professor Maharbiz?s current research interests
include building micro/nano interfaces to cells and organisms and exploring
bio-derived fabrication methods. Michel?s long term goal is understanding
developmental mechanisms as a way to engineer and fabricate machines.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.noisebridge.net/pipermail/noisebridge-discuss/attachments/20130911/e701bddf/attachment.html>

More information about the Noisebridge-discuss mailing list